
Supporting VCR-like Operations in Derivative
Tree-Based P2P Streaming Systems

Tianyin Xu∗, Jianzhong Chen∗, Wenzhong Li∗, Sanglu Lu∗, Yang Guo†, Mounir Hamdi‡
∗State Key Lab. for Novel Software and Technology, Nanjing University, Nanjing 210093, China

†Corporate Research, Thomson Inc., Princeton, NJ 08540, USA
‡Hong Kong University of Science and Technology, Kowloon, Hong Kong

Abstract— Supporting user interactivity in peer-to-peer
streaming systems is challenging. VCR-like operations, such as
random seek, pause, fast forward and rewind, require timely
P2P overlay topology adjustment and appropriate bandwidth
resource re-allocation. If not handled properly, the dynamics
caused by user interactivity may severely deteriorate users’
perceived video quality, e.g., longer start-up delay, frequent
playback freezing, or blackout altogether. In this paper, we
propose a derivative tree-based overlay management scheme to
support user interactivity in P2P streaming system. Derivative
tree takes advantage of well organized buffer overlapping to
support asynchronous user requests while brings high resilience
to the impact of VCR-like operations. A session discovery service
is introduced to quickly locate parent peer. We show that
the overhead of VCR-like operations in derivative-tree based
scheme is O(log(N)), where N is the number of sessions.
Simulation experiments further demonstrate the efficiency of
the proposed scheme.

I. INTRODUCTION

Providing media streaming service over the Internet has
become immensely popular in recent years, with the prolif-
eration of emerging applications including Internet TV, online
video, distance education, etc. Peer-to-peer (P2P) technology
has been proved to be an effective and resilient approach
for media streaming in dynamic and heterogeneous network
environments [1][2][3][4][5].

P2P live streaming, a typical media streaming service
designed for all peers receiving streamed video at the same
playback point, has been extensively studied and widely de-
ployed in the past ten years [6][7][1][2]. Recently, researchers
show great interests in P2P interactive streaming, a new genre
of P2P streaming service that supports not only asynchronous
user requests but also VCR-like user interactivity including
random seek, pause, fast forward and rewind [4][5].

Supporting interactive streaming in P2P system is a chal-
lenging task. On one hand, asynchronous user requests result
in caching different parts of video files by the peers, which
affects the efficiency of coordinating content delivery. On
the other hand, frequent VCR-like interactive operations lead
to peer churn, i.e., peers dynamically leave their current
positions and “jump” to a new playback position. Besides,
frequent VCR-like operations cause long latency and high
network overhead for re-establishing streaming services. The
tree-based [8][9] approaches organize nodes into a multicast
tree for delivering media streaming, with the media source
as the root of the tree. The gossip-based approaches [10][11]
maintain a series of supplier candidates in each node. Nodes

periodically exchange data availability information to update
their candidate lists. However, none of these work overcomes
the high network overhead caused by VCR-like operations.

In this paper, we propose DTStream, a peer-to-peer media
streaming system supporting VCR-like interactive operations.
Based on the observation that users’ viewing quality is
seriously affected by their suppliers’ frequently leaving cur-
rent positions for VCR-like operations, our objective is to
devise a novel P2P scheme to eliminate the impact of user
interactivity. In the proposed scheme, we explore the key
design issues including node organization scheme, media
content discovery, and user interactivity support.

II. RELATED WORK

Nowadays, using P2P technology to support interactive
video streaming attracts great research interests. There has
been a lot of work on providing continuous P2P on-demand
streaming, aiming at supporting VCR-like operations [9-14].

Most of existing work organizes peers into structured
(e.g. tree) or unstructured (e.g. gossip) overlays to provide
streaming service and resource relocation when user inter-
actions occur. P2VoD [9] defines generation to organize
nodes according to their joining time, where nodes in the
same generation store the same segments in their playback
buffers. However, although P2VoD supports asynchronous
requests effectively, it does not perform well under frequent
user interactions. VMesh [12] and BBTU [13] use dedicated
storage in each node to store segments across the P2P system.
The user interactivity is supported by continuously searching
required segments in the system. DSL [14] organizes all the
nodes into a dynamic skip list overlay. However, DSL does
not make full use of playback buffers as a node only chooses
its left neighbor as its supplier. RINDY [10] designs a gossip-
based ring-assisted overlay to implement fast relocation of
random seeks. In RINDY, each node maintains some near
and remote neighbors in a set of rings according to their
relative distances.

However, little attention has been paid to the network over-
head caused by frequent VCR-like operations. In this paper,
we introduce an efficient P2P system for media streaming
service with low cost VCR-like interactive operations.

III. SYSTEM OVERVIEW

The DTStream system mainly consists of three compo-
nents: media servers, sessions and a SessionCircle, which is
illustrated in Fig. 1.

DHT-based

SessionCircle

Session 1

Media Servers

Session 2

Fig. 1. The system model of DTStream

TABLE I
NOTATIONS

Not. Description Not. Description
n Number of nodes m Number of nodes in a tree
N Number of sessions sx Split line position of x
α Overlapping ratio px Playback position of x
B Playback buffer length hx Buffer head of x
K Upload bandwidth capacity tx Buffer tail of x
H Height of a derivative tree dx Pre-fetched length of x

Media servers simply provide media streaming service. All
video streams are initiated from the media servers, delivered
through the distributed P2P overlay, and finally reached to
end users. We assume media servers do not provide any
VCR functions, thus VCR-like operations are supported by
the coordination of peers in the overlay scheme. Peers with
similar playback positions are organized as sessions. Nodes in
a session form a tree-like structure, which is called derivative
tree (DT). Each session is composed of a set of nodes whose
playback position differences are within a threshold. If a node
performs VCR-like operations, i.e., jumping to a new playing
position beyond the threshold, it will join another session or
initiate a new session in the system.

The SessionCircle connects the root nodes of all sessions
to form a ring structure. Distributed Hashing Table (DHT) is
used in the ring for efficient information searching. Based on
DHT, a session discovery service (SDS) is implemented for
quick resource location and service re-establishing.

Similar to [6][9][10], a video stream is divided into seg-
ments of uniform length and each segment is equivalent to
one unit of playback time (usually 1 second). In DTStream,
we assume the playback rate is at constant bit-rate. Each node
maintains a size-limited sliding buffer window to cache the
most recently received segments, which could be supplied to
other subsequent peers.

IV. DERIVATIVE TREE-BASED OVERLAY SCHEME

In this section, we introduce the derivative tree-based
scheme for organizing peers in a session to support media
streaming service. The notations used in this paper are
summarized in Table I.

A. Derivative Tree

A derivative tree is a data delivery tree with streaming data
entering the root node and then delivering to all nodes in the
tree. It looks like an overlay multicast tree, but it has special
buffer management strategies and construction rules. Unlike
overlay multicast tree where similar contents are cached by

b

a

e f

dc

a

b c

d

e f

Split Line

Cache

Snapshot

Incoming

Stream

Outgoing

Stream

Incoming

Stream

Outgoing

Stream

Fig. 2. A derivative tree and its buffer snapshot with α = 1
2

each node, derivative tree employs an overlap cache design:
only parts of buffer contents of the nodes are similar, other
parts are different. Assume each node has the same playback
buffer length B units of streaming segments (Note that the
model can be easily extended to the conditions where B is
different). For each node, its playback buffer is split into
two parts by a split line: α × B and (1 − α) × B, where
α is a tunable parameter called overlapping ratio, indicating
the degree of two nodes’ buffer overlapped. Fig. 2 shows a
derivative tree with α = 1

2 . A node x is a child of node y only
if its playback point px is within y’s buffer, which guarantees
x can obtain playing segments from y directly. Assume x is
y’s child and the split line of y is sy . If px < sy , x is called
a left child of y; if px ≥ sy , it is a right child. The following
rule is applied in constructing a derivative tree: for each node
in the tree, if it is root or a left child, it may have a number
of right children and no more than one left child; if it is
a right child, it cannot have child any more. Based on this
rule, each left child can be viewed as the root of a sub-tree
derived from the original tree, which is the reason we use
the word “derivative”. If a node has no child, it is called an
external node (EN), otherwise it is called an internal node
(IN). According to the above rule, a right child’s buffer is
completely overlapped with its parent, yet a left child only
has α × B overlapped. Thus, the derivative tree supports
asynchronous user requests: a descendant’s playback position
is different from its ancestor’s.

pA
Node A

Node C

dA

Node D

played contents

pre-fetched contents

dD
dC

sA hAtA

pCsC hCtC

pDsD hDtD

Fig. 3. Buffer contents in a part of derivative tree

When a child node starts getting streaming contents
from its parent node, the relative distance of the playback
positions between the two nodes will remain unchangeable
if no VCR-like operation is performed. We use px to depict
the playback position of node x, and dx denote the distance
between px and the buffer head hx (pre-fetched contents).
Fig. 3 shows a part of derivative tree nodes and their buffers.
The following theorem gives the properties of derivative tree.

Theorem 1: Assume node C/D is a left/right child of node
A, as shown in Fig. 3. Suppose the height of the tree is H , the

number of nodes in the tree is m, and the upload bandwidth
capacity of each node is K (at most K children for each
node). We have

(1) The playback position of C and D satisfies:
tA ≤ pC < sA, sA ≤ pD ≤ hA;

(2) The number of nodes in the tree satisfies:
H + 1 ≤ m ≤ K ×H + 1

(3) In the overlapped caching scheme, data range of a
session is [hroot − (1 + (1− α)×H)×B), hroot], and the
length of caching contents is (1 + (1− α)×H)×B.

The proof of the theorem is straightforward and is omitted
due to page limit.

B. Node Join

The join operation is simple. When a new node x joins a
derivative tree, it first contacts the root node r, comparing its
request point px with the root’s split line sr. If sr ≤ px ≤ hr

and r has plenty of bandwidth, x will be assigned as a right
child of the root. If tr ≤ px < sr and r has no left child,
x will be the left child of r. Otherwise, x will trigger a
join operation to the sub-tree from the left child of r. The
process is repeated recursively. If none of the above situation
is satisfied, the join operation is failed.

Centralized directory can be used to facilitate join
operations. An efficient implementation is maintaining a left
offspring table (LOT) in the root node, which contains <IP
address, sub-range> pairs of all left children in the tree.
When a new node joins, it lookups the table and locates
the destination node. The following theorem shows join
operations in constant hops.

Theorem 2: Using LOT implementation, the join operation
is in O(2) hops.

Proof: If a node x joins as a right child of the root, it
only takes 1 hop. If not, the node lookups the LOT in the
root node and locates the target offspring, and then joins as
its child. It needs at most 2 hops for x to join the tree. So
the join operation is in O(2) hops.

C. Node Departure

Interactive streaming service causes much more frequent
node departure than live streaming, which affects the viewing
quality of the nodes in the downstream. In this session, we
will show the efficiency of the derivative tree-based overlay
scheme in reducing node departure affects. Assume node x is
leaving, the departure operation is handled according to the
following cases:

(1) If x is an external node, its departure will not affect
the tree structure and other nodes.

(2) If x is an internal node with right children, its departure
will leave a “vacant” node in the tree. In order to keep the
derivative tree structure, a right child of x with the closest
playback position is chosen to fill the vacant.

(3) If x is an internal node without any right child, its
departure will affect all its downstream nodes. In this case,
the sub-tree rooted from its left child also departs the original
session and forms a new session in the system.

Clearly the operation overhead in case 3 is much costful
than the other two cases. However, the probability that case 3

happens is quite small. In most condition, the node departure
operation needs no adjustment (in case 1) or only one hop
adjustment to the overlay (in case 2), which is favorable
to VCR-like operations. The influence of case 3 can be
eliminated by introducing a “graceful” departure: x keeps
providing service until its left child establishes connection
to the media server, which will not affect other downstream
nodes in the sub-tree.

V. VCR-LIKE OPERATIONS

This section introduces providing VCR-like operations in
the DTStream system. A session discovery service is used for
fast resource location, based on which VCR-like operations
are discussed.

A. Session Discovery Service

Session discovery service (SDS) is used to locate sessions
with the requested media files and their playback positions.
When a peer generates a request, it locates the proper session
using SDS and then joins the session. SDS is constructed
based on the SessionCircle using DHT technique. Notice that
each node in the SessionCircle is the root of a session.

We use Chord [15] as a representative DHT protocol in
DTStream. DHT implements fast discovery for static data
object, while in this scenario we need SDS for dynamic data
range: a node can join a session as long as its request point is
within the data range of that session. We design Distributed
Index (DI) on each SessionCircle node to implement SDS. All
the DIs together form a global index for a video. Owing to the
good properties of DHT, even in large scale, the maintenance
of DI is efficient and scalable with balanced load.

The DI construction process is described as follows. A
video is hashed as a groupID and mapped to a node, called
the Rendezvous Point (RP). To join the SessionCircle, a new
node sends a JOIN message to a successor node closer to the
RP. Upon receiving the JOIN message, the successor checks
whether it is an index node of the groupID. If so, the node
just adds the sender into its local index because there already
exits a path from the RP to itself. Otherwise, the node sets
itself as an index node and initiates its local index.

Assisted with DI, service location is simple. To search a
session, a node first contacts an arbitrary index node with
the groupID, then the index node performs a breath-first
searching. If a session is found to satisfy the join request, it
will send notification to the requester.

Theorem 3: It takes at most O(log(N)) hops to locate
the desired session using session discovery service, where
N is the number of sessions.

Proof: According to the properties of DHT, the length
of the searching path is at most O(log(N)). Thus searching a
session in the P2P streaming system needs O(log(N)) hops.

B. Discussion on VCR-Like Operations

Typical VCR-like operations include random seek, pause,
fast forward and rewind. As reported in [16][17], fast forward
and rewind occupy less than 1% in the workload while the
majority of user interactions are random seeks (48%) and

pauses (51%). Most VCR-like operations can be implemented
by the jump process: the combination of leaving the current
position and then re-joining with a new playback position. A
random seek jumps only once, and a fast forward or rewind
generally consists of a series of jump process [14]. Thus, we
focus on the jump process in this section.

When a VCR-like operation emerges on a node x, x
generates a jump request to the root node. When a root node
r receives a jump request from its descendant, it handles the
request according to the following cases: (1) jump in the local
session; (2) jump to another session; (3) jump nowhere. In
the first case, the root node checks its local LOT and finds
a new position for x. In the second case, node r searches
a new session in the SessionCircle and then x departs and
joins the other session. In the third case, since no node can
provide service for x, a new session is initiated.

The following theorem discusses the performance of jump
process.

Theorem 4: The jump process is in O(log(N)) hops.

Proof: As introduced in the previous paragraph, the
join operation needs O(2) hops, the departure operation
needs O(1) hops, and searching in the SessionCircle needs
O(log(N)) hops. Consider the three cases of jump process
mentioned above:

In case (1), node x performs a departure and a join
operation in the local session, which needs O(1)+O(2)=O(3)
hops;

In case (2), node x performs a departure operation, fol-
lowed by a search operation, and then a join operation to the
new session, which is O(1)+O(log(N))+O(2)=O(log(N))
in total;

In case (3), node x departs the current session, and after
a searching failure, initiates a new session, which needs
O(1)+O(log(N))=O(log(N)) hops.

Thus, the jump process is in O(log(N)) hops.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DTStream
via simulation, and compare it with some existing solutions.

A. Simulation Settings

The simulation is built on top of a topology of 5000 peer
nodes based on the transit-stub model generated by GT-ITM
[18]. The streaming rate is 256 Kbps (most video streams
over the Internet today are encoded in the 200-400 Kbps
range [4]) and the length of the media stream, denoted as L,
is 60 minutes. The default size of the playback buffer, denoted
as B, is 30Mbytes, i.e., each peer can cache 120 second recent
stream. The default overlapping ratio α of DT-based scheme
is 1

2 . The default number of children an internal node can
supply, denoted as K, is 6. We discuss the impact of different
α, B and K in the experiments. The arrival of peers follows
the Poisson Process with λ = 5. We also compare some
simulation results with RINDY [10], as the two systems use
similar buffer management without setting dedicated storage
for pre-fetching.

B. Simulation Results

1) Server Stress: Server stress is measured by the number
of sessions, i.e., the number of streams supported by the
media server. We discuss the impact of server stress for
varying B and K, by letting 5000 nodes join the system.
As is shown in Fig. 4, when the buffer size is small,
increasing buffer size makes server stress decrease quickly.
For example, when B/L ratio increases from 1% to 3%,
the server stress drops 39.5% for K=2, 42.2% for K=6
and 33.4% for K=11. However, while B/L ratio exceeds
3%, the server stress trends to stable, increasing buffer size
will not improve server stress. The reason is explained as
follows. A small buffer size leads to low coverage of media
contents in the whole system. At this time, increasing buffer
size effectively alleviates server stress. When the coverage of
the media contents is dense enough, increasing buffer size is
unnecessary. The parameter K also makes impact on server
stress. If each node only supplies one right child (K=2),
the server stress is much higher than K=6 and 11. Large K
can significantly decrease server stress, but imposes heavy
workload on internal nodes.

2) Control Overhead: The control overhead is measured
by the number of processed control messages. We compare
the control overhead of overlay maintenance in DTStream
with that of RINDY, which has 3 types of control messages:
ANNOUNCE, FORWARD, EXCHANGE. Fig. 5 shows the
average number of control messages per peer under a
dynamic environment where each peer performs VCR-like
operations with the probability 0.1. We can see that the
control overhead of DTStream is much smaller than RINDY:
only about 50% of RINDY in the node scale from 200
to 1400 peers. The main reason is that RINDY uses
gossip-based protocol to maintain peer membership. Such
maintenance entirely relies on message exchanging and
leads to higher overhead. In DTStream, peers are grouped by
the DT-based overlay to disseminate media streaming. The
derivative tree is well-structured and easy to maintain with
only a few message exchanging. Furthermore, in DTstream,
when a node leaves its current position, it needn’t gossip its
departure to “remote” peers, as is done in RINDY.

3) VCR Impact: DTStream can significantly reduce the
VCR impact of dynamic node departure due to frequent
user interactions, and thus provide smooth playback. We first
measure the VCR impact by average number of impacted
nodes per VCR-like operation. Here, impacted nodes refer to
nodes that must relocate media sources when their upstream
nodes perform VCR-like operations. Fig. 6 reports the VCR
impact of DTStream and RINDY for varying node scale from
500 to 5000 with VCR probability being 0.1. Fig. 7 shows
the VCR impact for varying buffer size, B and parameter
K of DTStream, and compared with RINDY in the scale of
5000 nodes. From these results, we can see that DTStream
is much less influenced by VCR-like operations compared to
RINDY. Besides, larger K results in lower VCR impact for
the higher probability of mounting right children.

Fig. 8 measures the average server stress increased due to
VCR-like operations. It shows that the server stress increased

0 2 4 6 8 10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

N
u

m
b

e
r

o
f
s
e

s
s
io

n
s

Buffer size/Movie length (%)

 K = 2

 K = 6

 K = 11

Fig. 4. Server stress for varying B

0 200 400 600 800 1000 1200 1400 1600

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 c

o
n

tr
o

l
m

e
s
s
a

g
e

s

Number of peers

 DTStream

 RINDY

Fig. 5. Control overhead

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
g

.
Im

p
.

Number of peers

 DTStream

 RINDY

Fig. 6. VCR imp. for varying scale

0 1 2 3 4 5 6 7 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
g

.
Im

p
.

Buffer size / Movie length (%)

 DTStream (k=11)

 DTStream (k=6)

 RINDY

Fig. 7. VCR imp. for varying B

0 1000 2000 3000 4000 5000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
v
g

.
s
e

rv
e

r
s
tr

e
s
s
 i
n

c
re

m
e

n
t

Number of peers

 DTStream

 RINDY

Fig. 8. VCR imp. to server stress

0 1000 2000 3000 4000 5000

5

10

15

20

25

30

35

40

45

50

55

60

N
u

m
b

e
r

o
f
s
e

s
s
io

n
s

Number of peers

 a = 1/5

 a = 1/3

 a = 1/2

 a = 2/3

 a = 4/5

Fig. 9. Server stress for varying α

0 1000 2000 3000 4000 5000

0.012

0.016

0.020

0.024

0.028

0.032

0.036

0.040

0.044

A
v
e

ra
g

e
 r

e
je

c
te

d
 n

u
m

b
e

r

Number of peers

 a = 1/5

 a = 1/3

 a = 1/2

 a = 2/3

 a = 4/5

Fig. 10. Reject rate for varying α

0 1000 2000 3000 4000 5000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
v
g

.
Im

p
.

Number of Peers

 a= 1/5

 a = 1/2

 a = 4/5

Fig. 11. VCR Imp. for varying α

in RINDY is much higher than DTStream. The server stress
of RINDY is insensitive to the number of peers. However,
server stress increment in DTStream is dropped in a larger
system. When the number of peers reaches to 5000, the server
stress increment of RINDY is more than 3 time of DTStream.

4) Discussion on Overlapping Ratio: In derivative tree-
based overlay, a node buffer is split into two parts by the
split line according to the overlapping ratio α. How to select
appropriate α is important to the system performance. Fig. 9
and Fig. 10 present the server stress and service reject rate for
different α in varying node scale. Service reject rate refers
to the average number of requests rejected by all sessions
due to resource constraints. Fig. 11 shows the VCR impact
for different α. We can see that smaller α will decrease
VCR impact while imposing higher server stress and service
reject rate. The main reason is that a smaller α means a less
overlapped buffer, which will increase the proportion of right
children in the tree. The more right children, the less VCR
impact on these nodes. However, it is also easier for internal
nodes to exhaust their uplink bandwidth, which causes higher
service reject rate and server stress.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose DTStream, an interactive stream-
ing system to provide continuous media streaming with
VCR-like user interactivity in large-scale P2P network. We
design a derivative tree-based overlay scheme to organize
dynamic and asynchronous peers while bring such advantages
as well structured, controllable start-up delay, less memory
consumption and quick service construction. By using an
efficient session discovery service, we discuss VCR-like
operations and their implementation in the P2P streaming
system. The cost of VCR-like operations is proved to be
in O(log(N)). The efficiency of the proposed scheme is
confirmed by extensive simulations.

ACKNOWLEDGMENT

This work is partially supported by the National High-Tech
Research and Development Program of China (863) under
Grant No. 2006AA01Z199; the National Natural Science

Foundation of China under Grant No. 60803111, 90718031,
60573106, 60721002; and the National Basic Research
Program of China (973) under Grant No. 2009CB320705.

REFERENCES

[1] “PPLive”, http://www.pplive.com/.
[2] “Joost”, http://www.joost.com/.
[3] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Fea-

sibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points,” In Proc. of ACM SIGCOMM’04,
Aug. 2004.

[4] C. Huang, J. Li, K. W. Ross, “Can Internet Video-on-Demand be
Profitable?” In Proc. of ACM SIGCOMM’07, Aug. 2007.

[5] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Liu, C. Huang, “Challenges,
Design and Analysis of a Large-scale P2P-VoD System,” In Proc. of
ACM SIGCOMM’08, Aug. 2008.

[6] X. Zhang, J. Liu, B. Li, and T. Yum, “CoolStreaming/DONet: A Data-
driven Overlay Network for Peer-to-Peer Live Media Streaming,” In
Proc. of IEEE INFOCOM’05, Mar. 2005.

[7] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D.Deng, “AnySee: Peer-to-Peer
Live Streaming,” In Proc. of IEEE INFOCOM’06, Apr. 2006.

[8] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous Streaming
Multicast in Application-Layer Overlay Networks,” In IEEE Journal on
Selected Areas in Communications, 22(1):91-106, Jan. 2004.

[9] T. T. Do, K. A. Hua, and M. A. Tantaoui, “P2VoD: Providing Fault
Tolerant Video-on-Demand Streaming in Peer-to-Peer Environment,” In
Proc. of IEEE ICC’04, Jun. 2004.

[10] B. Cheng, H. Jin, X. Liao, “Supporting VCR Functions in P2P VoD
Services Using Ring-Assisted Overlays,” In Proc. of IEEE ICC’07, Jun.
2007.

[11] Y. Guo, S. Mathur, K. Ramaswamy, S. Yu, and B. Patel, “PONDER:
Performance Aware P2P Video-on-Demand Service,” In Proc. of IEEE
GLOBECOM’07, Nov. 2007.

[12] W. P. K. Yiu, X, Jin, and S. H. G. Chan, “VMesh: Distributed Segment
Storage for Peer-to-Peer Interactive Video Streaming,” In IEEE Journal
on Selected Areas in Communications, 25(9):1717-1731, Dec. 2007.

[13] C. Xu, G. M. Muntean, E. Fallon, and A. Hanley, “A Balanced Tree-
based Strategy for Unstructured Media Distribution in P2P Networks,”
In Proc. of IEEE ICC’08, Jun. 2008.

[14] D. Wang and J. Liu, “A Dynamic Skip List-based Overlay for On-
Demand Media Streaming with VCR Interactions,” In IEEE Transaction
on Parallel and Distributed Systems, 19(4):503-514, Apr. 2008.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” In Proc. of ACM SIGCOMM’01, Aug. 2001.

[16] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “DISC: Dynamic Inter-
leaved Segment Caching for Interactive Streaming,” In Proc. of IEEE
ICDCS’05, Jun. 2005.

[17] C. Costa, I. Cunha, A. Borges, C. Ramos, M. Rocha, J. Almeida, and
B. Ribeiro-Neto, “Analyzing Client Interactivity in Streaming Media,”
In Proc. of the International World Wide Web Conference, May. 2004.

[18] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork,” In Proc. of IEEE INFOCOM’96, Mar. 1996.

